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Abstract: The paper presents a method for comparing the mechanical effects of overweight and design load vehicles on bridges. There
is no restriction on the arrangement of the axles and on the size of the axle loads. The bridge may be a simple span bridge, a continuous
girder, a truss girder, or an arch. Even for a very complex bridge structure the only required parameter of the bridge is the span length.
The presented method is a robust and reliable tool for the permitting process of overweight vehicles, which is verified by several thousand
comparisons.
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Introduction

Overweight and oversize vehicles require permits to reach their
destination. To obtain the optimum route an optimization process
�Osegueda et al. 1999; Adams et al. 2002� must be developed
which includes the evaluation of the load bearing capacities of the
bridges and the verification of geometrical constraints along the
route �Osegueda et al. 1999�. In this paper, we focus only on the
analysis of bridges.

Bridges are designed according to design guides and stan-
dards, which prescribe the safety factors and the design load.

When a bridge is evaluated for an overweight vehicle, the
designer may choose from the following options: �1� he or she
may perform a detailed structural analysis, similarly as it is
done for the design load; or �2� he or she may apply a simplified
structural analysis, such as a comparison of the internal forces
�bending moment, shear force, normal force� resulting from the
design load and overweight vehicle. Usually both of these proce-
dures are time consuming and require several data of the bridge.
In many cases, simplified methods are feasible, which are based
on �3� the comparison of the axle loads. One of the best-known
methods is the application of the “federal bridge formula” �Bridge
Formula Weights 1994�, which also has several improvements
�James et al. 1986; Chou et al. 1999; Kurt 2000�.
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In this paper, a new method is presented that can be used for
arbitrary design load/overweight vehicle combinations and for
any kind of bridge structures.

Problem Statement

We consider a bridge of the highway system, which can be a
simple span bridge, a continuous girder, a truss girder, or an arch
bridge �Fig. 1�. The bridge has been designed for a load defined in
the national standard �Fig. 2�a��; this load will be referred to as
“design load vehicle” �DLV�. The bridge is subjected to a vehicle
load that has arbitrary axle spacings and axle loads. This vehicle
requires a permit. It is referred to as an “overweight vehicle”
�OV�. Examples of DLV and OV are shown in Fig. 2. We wish to
determine the stress ratio for the bridge, defined as

n = min�EDLV

EOV � �1�

where E denotes a relevant effect on the bridge, such as bending
moment, normal force, shear force, punching shear at any section
of the bridge, or the reaction forces resulting from the vehicle
load. The superscripts DLV and OV refer to the design load

Fig. 1. Bridge structures



vehicle and to the overweight vehicle, respectively. EDLV/EOV can
be calculated for a large number of effects; however, we choose
one that results in a smaller number, n.

If the safety level of the bridge designed for the DLV and the
bridge subjected to the OV is the same, n is a measure of the
safety of the bridge; when n is bigger than one, the OV may go
across the bridge. In the analysis, we assume that the widths of
the DLV and the OV are identical �a modification for taking into
account the difference in the widths of the vehicles is given in
Kollár �2001��. �When the safety level is different for the original
design and for the present calculation—for example, when over-
strength factors are taken into account—a modification is needed
that takes into account the live load/dead load ratio �James et al.
1986�.

The distributed design load is not considered in this article.
Note, however, that heavier, overweight vehicles may go across a
bridge if the other vehicles are not permitted.

Approach

As we stated in the previous section the effects �e.g., the internal
forces� caused by the DLV and by the OV must be determined,
and their ratio, n, must be calculated. As an example, the bending
moment envelopes of these loads are calculated on a simply sup-
ported girder �Fig. 3�a��. When the maximum bending moments
are compared, n is equal to

Fig. 2. Design load vehicles �a–c�; o

Fig. 3. �a� Bending moment envelopes of a simple span bridge subje
moment with the aid of the influence line
JOU
n =
Mmax

DLV

Mmax
OV

The internal forces can also be determined with the aid of
influence lines. This is illustrated for the bending moment of
the midspan cross section in Fig. 3�b�. The bending moments
calculated by the loading of the structure and by the loading of
the influence line are identical. Every relevant effect �internal
forces, reaction forces� must be calculated and compared, and
consequently, every relevant influence line must be considered.
Typical influence lines for different bridge structures are shown in
Fig. 4.

We observe that only the shapes of the influence lines are
important—their ordinates are irrelevant because we are inter-
ested only in the ratio �n� and not in the real values of the internal
forces.

Here we propose the usage of three artificial influence lines,
shown in Fig. 5. The maximum ordinates of these lines are chosen
as shown in Fig. 5; however, as we stated above, these values
do not influence the results of the calculations. The lengths of
the influence lines �x� varies between zero and a maximum
value �e.g., the length of a simply supported bridge, 0�x� l�; the
maximum value will be discussed for different bridges in the
verification section. For a simply supported beam �M and �B

are identical to the shape of the reaction force influence line
and to the bending moment influence line of the midsection, re-
spectively, when x= l. For a continuous span bridge, the influence

ight vehicles �d–f� �permit required�

the DLV and to the OV and �b� calculation of the midspan bending
verwe
cted to
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lines are curved and the lines given in Fig. 5 can be considered as
the approximations of the “accurate” influence lines.

The application of these three artificial influence lines has
several advantages over the accurate calculation of the internal
forces: �1� most importantly, it requires very few input data—
in addition to the axle spacing and axle loads, only the spans of
the bridges are needed; and �2� the calculation is very fast �the
required algorithm is given in Appendix III�.

We recall that the method of comparison of the axle loads also
has the above advantages over the accurate calculation. Hence the
question arises: why do we need a new method? The usage of the
artificial influence lines has the advantage over the comparison of
the axle loads that it is more accurate and more robust. It was
demonstrated by several researchers that the comparison of the
axle loads �e.g., the use of the federal bridge formula� may be
inaccurate, should be used only for limited spans �James et al.
1986� and gross loads, and only for simple span bridges. �The
comparison of the three methods is also shown in Table 1.�

We must admit that the proposed method has a few disadvan-
tages: it is less accurate than the accurate calculation of the inter-
nal forces, and may result in either a too conservative or an unsafe
design. This question will be addressed in the verification section,
and we will see that the proposed method has reasonable accu-
racy. A disadvantage of the method of artificial influence lines
over the comparison of the axle loads is that it is more
complicated—the latter requires the application of a simple
formula, which can be used also with hand calculation. We must
agree with this criticism; however, we emphasize that �1� the
same number of inputs are needed in both methods �the compari-
son of axle loads also requires the knowledge of the bridge span,
because it may be used only under a maximum span�; and �2� the
calculation of the artificial influence lines can be carried out by

Fig. 4. Typical influence lines of bridge structures: M, A �or B�, V, a
force, respectively
very fast matrix manipulations �loops can be avoided�. These cal-
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culations require a computer, but the method is fast and reliable
�see Appendix III�.

The usage of the artificial influence lines is demonstrated
in Fig. 6. The right column can be interpreted as the comparison
of the midspan bending moments of a simple span bridge.
MDLV�x�=the maximum value obtained from �B �with length x�
considering every possible position of the DLV. MOV is calculated
similarly. The strength ratio is defined as

nB =
EB

DLV

EB
OV =

MDLV

MOV �2�

It can be seen that the bending moment induced by the DLV is
greater than that of the OV when x is smaller then 6 m; however,
it is smaller when x�6 m. The middle column can be considered
the comparison of either the reaction forces or the maximum
shear forces, while the left column can be considered the

refer to the bending moment, reaction force, shear force, and normal

Fig. 5. Proposed “artificial” influence lines
nd N



comparison of the maximum total load of the vehicles over a
distance x.

Failure of the Main Girders
and of the Second-Order Members

The bridge is a complex structure that may consist of main gird-
ers, cross girders, bridge deck, etc., and we must avoid the failure
of any of them. Failure of the main girder or of the supports is
referred to as “global failure,” while the failure of the cross gird-
ers, bridge deck, etc., is called “local failure.”

The local failure of the bridge deck can be caused by the
punching shear induced by one axle, which can be investigated
by the comparison of the maximum axle loads. This is identical
to the usage of �P �Fig. 6�a�� with x�0. The punching can also
be caused by two axles that are close to each other. For example,
in Fig. 6 the two axles of the OV are closer to each other than
the axles of the DLV, but the resultant of these two axles is
still smaller than the maximum axle load of the DLV. This is

Table 1. Comparison of Present Method with Accurate Calculation of In

Type

Accurate
calculation

of internal forces

Accuracy High P

Required input data Hundreds or thousands Ax

Required analysis Complex �computer� Simp

Fig. 6. Resultants according to the three influence lines subjected to
presented as functions of the length of the influence lines
JOU
shown in the left column of Fig. 6, where at x�2 m, EP�178
and 170 kN for the DLV and OV, respectively. As a consequence
�P can be used to investigate the local failure, where x should
be significantly smaller than the span of the bridge �for example,
0�x�0.2l�. The load on the cross girder depends on the loca-
tions and the stiffnesses of the girders. The influence lines of
these girders can have different shapes—their �positive� parts are
significantly shorter than the span. We propose to use all the three
artificial influence lines to take into account the local effects. The
stress ratio for local effects is defined as

nloc = min�nP,nB,nM�, 0 � x � lloc �3�

where lloc�short distance �e.g., lloc=0.2l�.
When we compare the internal forces of the main girder due to

the DLV and due to the OV, we may face the following problem,
which is illustrated in Fig. 7 for a simply supported single span
bridge. The dashed line is the bending moment envelope due to
the DLV, while the solid line is the bending moment envelope due
to the OV. It can be seen that the midsection can carry the OV:
MDLV�MOV. However, close to the support, where the bending

Forces and with Comparison of Axle Loads

Comparison
of axle loads

Artificial
influence line

�present�

limited application Acceptable

s and spacing�spans Axle loads and spacing�spans

mula �hand calculation� Few matrix calculations �computer�

LV shown in Fig. 2�c� and to the OV shown in Fig. 2�f�; results are
ternal

oor or

le load

le for
the D
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moments are small, MDLV�MOV. As a consequence, when the
bridge cross sections are designed exactly for MDLV, it cannot
carry the OV. In reality, cross sections with internal forces less
than the maximum value are built to larger dimensions and there-
fore have a higher safety level. In addition, in practical design, the
sections have minimum dimensions and as a consequence a mini-
mum load-bearing capacity. Hence a parameter � is introduced,
and it is assumed that every cross section is capable to carry at
least �Mmax bending moment. By so doing the bridge shown in
Fig. 7�b� may carry the OV.

Verification

In this section, we will apply the method of artificial influence
lines for simple span bridges, two span bridges, continuous span
bridges, trusses, and arches, and we will determine the accuracy
of the suggested method. The accurate calculation was carried out
with a finite-element program containing beam elements.

First, we have calculated the maximum internal forces
�and maximum reactions� caused by the DLV. They are denoted

by Êi
DLV �i=1. . . I�, where I�total number of the investigated

forces along the bridge. When Êi
DLV is smaller than �Emax

DLV �where

Emax
DLV=max�Êi

DLV��, it is replaced by �Emax
DLV; hence we write

Ei
DLV=max�Êi

DLV,�Emax
DLV�.

Then, we calculate the internal forces �and maximum
reactions� induced by the OV, which are denoted by Ei

OV. The
accurate stress ratio of the bridge is defined as

naccurate = min�Ei
DLV

Ei
OV ,nloc� �4�

where nloc�stress ratio �Eq. �3�� according to the local failure.
Next, nP, nM, and nB are calculated as described in the

approach section, and the stress ratio is calculated by

n = min�nP,nM,nB� �5�

where nP, nM, and nB are calculated for different lengths

nP: 0 � x � lP; nM: 0 � x � lM ; nb: 0 � x � lB �6�

The accuracy of the method can be determined by

� =
naccurate

n
�7�

When ��1, the result is accurate; when ��1 the method is

Fig. 7. �a� Bending moment envelopes and �b� modification of the
envelope due to the DLV
conservative; and when ��1 it is not conservative.

286 / JOURNAL OF BRIDGE ENGINEERING © ASCE / MAY/JUNE 2006
In Fig. 2, some of the vehicle loads are shown that are consid-
ered in the verification. In Figs. 2�a–c� the Hungarian and the U.S.
DLV are given �Standard Specifications 1989�. Figs. 2�d–f�
show real truck loads. Note that in the verification of the method
the gross weights of the vehicles do not matter. In Appendix II
we list all the vehicle loads that were taken into account in the
verification.

We have calculated the � parameter, and the smallest and
the highest values of � are given in tables of the following
subsections. The results depend on the following parameters:
• Type and geometry of the bridge;
• Type of DLV �we will consider three cases: the DLV is given

in Fig. 2�a�, denoted by “Hungary”; the DLV is given in
Figs. 2�b and c�, denoted by “USA”; and the DLV can be any
of the loads listed in Tables 7 and 8, denoted by “ALL”�;

• Parameter �, which is shown in Fig. 7;
• Distance lloc, considered in the calculation of nloc; and
• Distance lP , lM , lB, considered in the calculation of n.

In the calculation, every single load in Tables 7 and 9 is taken
into account as OV.

We emphasize that these comparisons �verifications� show the
effect of global failure of the bridge. For those DLVs where
the local failure governs the design �when Eq. �4� gives
naccurate=nloc�, � is obviously greater than or equal to unity. �In
these cases the method may be more conservative than the values
given in the following tables. A better accuracy can be achieved if
we have knowledge on the details of the bridge.�

Simple Span Bridges

We consider a simple span bridge shown in Fig. 8�a�. In the
accurate calculation �Eq. �1�� we compared the bending moments,
the shear forces, and the reaction forces. We considered five
different spans, where l�10, 15, 20, 30, and 50 m.

The number of vehicle loads is 33; hence a total number of
2,860 bridge calculations were carried out. �The bending moment
and shear force envelope were, in each case, calculated by load-
ing the bridge in more then 40 different positions.� The results
are shown in Table 2. In the calculation of �s the following pa-
rameters were used: lloc=0.2l, lB= lM = l.

Note that in this case �M and �B give the exact shear force at
the support and the exact bending moment at the midspan.

Continuous Span Bridges

We considered two-span and three-span bridges shown in Figs.
8�b–f�, with spans l�10, 15, 20, 30, and 50 m. In the accurate

Fig. 8. Simple span and multispan bridges considered in the
verifications
calculation we take into account the bending moments, shear



forces, and the reaction forces. In the calculation of �s lloc=0.2l,
lB= lM = l were considered. The results for lP= l1+0.6l2 and ��0.5
are given in the top three rows of Table 3. The last three rows
were calculated similarly to those of Table 5, which will be dis-
cussed in the section on arch bridges. Further results are presented
in Vigh �2006�.

For the last case �Fig. 8�f�� it was assumed that the second
moment of inertia is changing from I0 to 8I0, following a second
order parabola.

Truss Bridges

We consider trusses with the shapes shown in Fig. 9. The num-
bers of cells were 6, 12, 18, 24, and 30, while the lengths were 10,
20, 30, 40, and 50 m. In the accurate calculation we calculate the
bar forces and reaction forces. The total number of the calculated
cases was about 5,720. The results are given in Table 4; further
results can be found in Vigh �2006�.

Arch Bridges

We consider the arch bridges with the geometrical and stiffness
characteristics shown in Fig. 10. The height of the arch was

Table 2. Accuracy of Method ��min/�max� for Simply Supported Bridges
as a Function of lP and �

lP DLV ��0.5 ��0.7 ��0.9 ��1.0

0.2l USA 0.96/1.19 0.96/1.19 0.96/1.19 0.96/1.22

Hungary 0.98/1.03 0.98/1.03 0.98/1.03 0.98/1.03

ALL 0.88/1.19 0.96/1.19 0.96/1.19 0.96/1.22

0.6l USA 1.00/1.33 1.00/1.33 1.00/1.33 1.00/1.35

Hungary 0.99/1.32 0.99/1.33 0.99/1.33 0.99/1.33

ALL 0.90/1.66 0.96/1.66 0.97/1.66 0.98/1.66

0.7l USA 1.00/1.33 1.00/1.33 1.00/1.33 1.00/1.35

Hungary 1.00/1.42 1.00/1.42 1.00/1.42 1.00/1.42

ALL 0.90/1.66 0.96/1.66 0.98/1.66 0.99/1.66

0.8l USA 1.00/1.48 1.00/1.48 1.00/1.48 1.00/1.50

Hungary 1.00/1.51 1.00/1.51 1.00/1.51 1.00/1.51

ALL 0.90/1.66 0.96/1.66 0.98/1.66 0.99/1.66

l USA 1.00/1.64 1.00/1.64 1.00/1.64 1.00/1.67

Hungary 1.00/1.82 1.00/1.82 1.00/1.82 1.00/1.82

ALL 0.90/1.95 0.96/1.95 0.98/1.95 0.99/1.95

Note: See Figs. 5�a� and 7.

Table 3. Accuracy of Method ��min/�max� for Multispan Bridges

DLV Fig. 8�b� Fig. 8�c� Fig. 8�d� Fig. 8�e� Fig. 8�f�

�a� Every axle

USA 0.89/1.45 0.88/1.49 0.85/1.41 0.85/1.46 0.88/1.49

Hungary 1.00/1.47 1.00/1.26 0.98/1.38 0.98/1.40 1.00/1.26

ALL 0.89/1.49 0.88/1.49 0.85/1.41 0.80/1.51 0.88/1.49

�b� Axles that increase the effect

USA 0.89/1.45 0.88/1.50 0.85/1.44 0.85/1.48 0.88/1.50

Hungary 1.00/1.47 1.00/1.26 0.98/1.38 0.98/1.40 1.00/1.26

ALL 0.89/1.49 0.88/1.50 0.85/1.44 0.85/1.51 0.88/1.50
Note: lP= l1+0.6l2 and �=0.5.

JOU
f =0.3l, the axial elongation of the columns were neglected, and it
was assumed that their connections to the arch and to the deck are
hinged. The spans of the bridge are l�20, 30, 40, and 50 m, while
the number of suspenders are n5,15. In the accurate analysis
we calculated the axial forces in all the elements, the bending
moments and the shear forces in the arch and in the deck, and the
reaction forces. The results are given in the upper three rows of
Table 5.

The accuracy of the calculation is significantly smaller than in
the previous cases. The reason is that the influence lines of the
deck consist of both positive and negative parts, while the artifi-
cial influence lines have only positive parts. The change in sign
within an influence line means that some of the axles may reduce
the total effect of the vehicle load. Engineering practice often
does not take into account these axles, and for example, according
to the Eurocode �European Standard EN1991-2 �European Stan-
dard 2002��, the designer must neglect those axles, which reduce
the effect �moment, stress, etc.� at the considered cross section.
The accurate calculations were also carried out with this assump-
tion: we took into account—for the DLV—only those axles that
increase the effect at a given cross section. The results of the
calculation are presented in the lower three rows of Table 5.

Numerical Example

We consider a two-span bridge, both with 10-m spans �Fig.
11�a��. The bridge was designed for the DLV with three axles
�Fig. 2�c��, and its gross weight is 400.5 kN. The OV has six axles
�Fig. 2�f��, and its gross weight is 478.4 kN.

We wish to calculate the safety �n� of the bridge with the
approximate method of artificial influence lines and also to deter-
mine the accuracy of the method with the aid of the calculation of
internal forces.

Table 4. Accuracy of Method ��min/�max� for Truss Bridges

DLV Fig. 9�a� Fig. 9�b�

USA 1.00/1.94 1.00/1.94

Hungary 1.00/1.43 1.00/1.43

ALL 0.99/2.13 0.99/2.13

Fig. 9. Truss bridges considered in the verifications
Note: lP=0.2l and �=0.5.
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First, we calculate the internal forces and maximum reaction
forces caused by the DLV and OV numerically. The shear force
and bending moment envelopes are shown in Figs. 11�b and c�.
We may expect that the critical section of a two-span bridge be
either at the midspans or at the middle support. In this case, the
critical cross section is left of the middle span �identified by a
bullet in Fig. 11�c��; here, the ratio of bending moments is the
lowest, with naccurate=MDLV/MOV�0.802. Both the shear force
�VDLV� and the bending moment �MDLV� envelopes caused by
DLV contain a horizontal line due to a minimum load bearing
capacity. As we mentioned before, every cross section can carry
at least �Tmax shear force and �Mmax bending moment, where
��0.5.

Then, we use the artificial influence lines. The effects EP, EM,
and EB caused by the DLV and the OV are shown in Fig. 6.
The safety, defined as n=EDLV/EOV is also shown in Fig. 6, and
it is reiterated in Fig. 12�a�. In Fig. 12�b�, the minimum values
of n in the 0 . . .x interval are plotted. As it was stated in the
continuous span bridge section, the P line is evaluated at
lP= l1+0.6l2 �here l1= l2= l�10 m�, while the M and the B lines
are evaluated at lB= lM = l; thus we have nP�0.682 at lP�16 m
and nM�0.890, nB�0.860 at lB�10 m.

Finally, the minimum safety is calculated as
n=min�nP ,nM ,nB�=nP�0.682. The comparison of internal

Table 5. Accuracy of Method ��min/�max� for Arch Bridges

DLV Iarch=5Ibeam Iarch= Ibeam Ibeam=5Iarch

�a� Every axle

USA 0.73/1.51 0.95/1.66 0.96/1.71

Hungary 0.86/1.42 0.98/1.43 1.00/1.45

ALL 0.73/1.80 0.87/1.80 0.88/1.80

�b� Axles that increase the effect

USA 0.95/1.51 0.97/1.66 0.97/1.71

Hungary 0.87/1.42 0.98/1.43 1.00/1.45

ALL 0.87/1.82 0.95/1.80 0.96/1.80

Fig. 10. Arch bridges considered in the verifications �I=second
moment of inertia�
Note: See Fig. 10; lP=0.7l and �=0.5.
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forces gave 0.802. We found that in this case, the approximate
calculation is on the safe side, and the difference is only 18%.

Discussion

In this paper we presented a new method for comparing the
effects of overweight and design load vehicles. This method
contains a few parameters listed in the verification section. In the
calculations, for every type of bridge, the maximum length of
lM and lB was equal to the span of the bridge �or to the longest
span of a multispan bridge�. The reason is that these are good
approximations of the shear force and bending moment influence
lines. The length of lP was chosen according to the result of the
numerical calculations, which are summarized in Table 6.

The � value was also investigated numerically, and it
was found that ��0.5 can be recommended for every case.

Table 6. Accuracy of New Method ��min/�max� for Different Bridges

Bridge structure

DLV Simple span Multispan Truss Arch

USA 0.96/1.19 0.85/1.50 1.00/1.94 0.95/1.71

Hungary 0.98/1.03 0.98/1.47 1.00/1.43 0.87/1.45

ALL 0.88/1.19 0.85/1.51 0.99/2.13 0.87/1.82

lP 0.2l l1+0.6l2 0.2l 0.7l

Note: The recommended and applied parameters are lB= lM = l, and lP is
given in the last row. In the calculation, we took into account all the loads
given in Tables 7 and 8 as OV, while the considered DLVs are as follows:
for USA, the load is given in Figs. 2�b and c�; for Hungary, the load is
given in Fig. 2�a�; and for ALL, all the loads are considered, which are

Fig. 11. Geometry of: �a� two-span bridge; �b� shear
force; and �c� bending moment envelopes �n=VDLV/VOV or
n=MDLV/MOV�
given in Tables 7 and 9.



With these parameters more than 15,000 calculations were carried
out to verify the method. In most of the cases, the method is
conservative; the maximum error on the unsafe side is 15%, as
summarized in Table 6 for different bridge structures �the error on
the unsafe side can also be compensated by applying a safety
factor�.

The main advantage of the method is that it requires very little
bridge data �the spans�, and it is robust and reliable, which is
demonstrated and verified by several thousand comparisons.

This method can serve as the basic building block of the
permitting procedure of overweight vehicles. In an application, it
is worthwhile to extend the method by considering the effect of
�1� the distributed loads and �2� the effect of the width of the load
and the position of the load perpendicular to the bridge axis.

The presented method, together with the listed parameters,
was built in a computer program, which is used by the Technical
and Information Services on National Roads, Hungary.

In developing the method, after the birth of the basic idea
�Kollár 2001� we were facing the questions: Which and how
many artificial influence lines have to be taken into account
�possibly different lines for different bridge structures�, to obtain
a robust, reliable, and relatively simple procedure?

For example, we may consider only the �P influence lines
�with a total length of lP= l for simple span� instead of the three
lines given in Fig. 5�a�. As a result the accuracy is significantly
less—on the unsafe side it is about 0.9, while on the safe side it is
very high �as can be seen, for example, in simply supported
bridges in Table 2, last line�. As a consequence, the application of
�P only is not recommended.

To apply a few further influence lines may increase the �min

value; however, it also may increase the �max values, and hence it
is not recommended either. It can also be shown �see Appendix
III� that influence lines with arbitrary shapes may give very
conservative results.

A possible change in the method is to use a trapezoidal line
instead of �P to avoid “jumps” in the E�x� lines. It was found
�Vigh 2006� that it has only very minor effects on the accuracy of
the method and it is more complicated than the method described

Fig. 12. �a� Safeties nP ,nM ,nB due to the P, M, and B influence li
in the 0 . . .x interval �naccurate=0.8 is calculated with the comparison
in Appendix III.

JOU
Our recommendation, as it was stated before, is to use the lines
in Fig. 5, with the parameters given in Table 6.
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Appendix I. Determination of the “Most Dangerous”
Influence Lines

As stated in the approach section, the different effects �such as
bending moment, shear force, etc.� can be investigated with the
aid of influence lines. We suggested three artificial influence lines
given in Fig. 5. The question arises: Can we determine math-
ematically those influence lines that give the lowest value of n?
By so doing, we may have a process, which is conservative and
scientifically rigorously proven.

It is easy to show in an example that this process may lead to
a result that is too conservative and cannot be used in the practical
cases. Let us consider a DLV and an OV with identical axle loads,
but different axle spacing. The minimum value of n is resulting

the function of length and �b� minimum values of nP, nM, and nB

internal forces�

Fig. 13. Unrealistic influence line
nes as
of the
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from the influence line, which has zero values everywhere, but
under the axles of the OV, it is equal to unity �Fig. 13�. For this
case n=1/m, where m=number of axles of the OV. Note that this
influence line results in a mathematical minimum; however, it is
unrealistic and gives unreasonable results. �This is the reason why
we investigated “real” structures in the verification section.�

Let us now investigate a problem that has limited practical
use but is closer to the real cases. Let us assume that both the
DLV and the OV are symmetrical continuous loads, which are
monotonously increasing from the left to the middle. We also
assume that the yet unknown influence line has the same charac-
teristics. For simplicity, we assume that the maximum value of
the DLV and OV are the same as shown in Figs. 14 and 15.
For the case when there is one intersection of the function OV
and DLV �Fig. 14� it can be shown that the influence lines result
in the lowest and the highest n when the influence lines are
uniform �denoted by �P in Fig. 5�a��. When the functions of the
loads have more intersections the influence lines that provide
the maximum and minimum n must be chosen from those
constant influence lines, which end at the intersection points.
As can be seen from this example, the �P line can serve as the
“most dangerous” influence line in many cases.

When the loads are not symmetrical and they are not mono-
tonic, more complex influence lines may be the most dangerous.
In Fig. 16, we show two examples where for the given OV and
DLV, we determined numerically the influence lines, which
result in the lowest n. Note that we applied the restriction to
the influence lines that they are positive and must have a mono-
tonically increasing and a monotonically decreasing part. In the
calculation, the “fmins” algorithm of MATLAB was used. The
influence lines were composed with 20 linear sections, hence the
optimization included 21 parameters.

Fig. 14. Two influence lines that result in the lowest and the highest
value of n when the loads are symmetrical and continuous with one
intersection point

Fig. 15. Three influence lines that result in the lowest and the highest
value of n when the loads are symmetrical and continuous with many
intersection points
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Appendix II. Considered Vehicle Loads

Table 7. Axle Load and Axle Spacing of the Artificial DLVs and OVs

DLV and OV �artificial vehicles�

Number
Axle
load

Axle
spacings

�m�

Gross
weight
�kN�

Overall
length
�m�

1 0.2 4

2 0.4 8

3 0.6 12

4 0.8 16

5 1.0 20

6 0.2 4

7 0.4 8

8 0.6 2,121 12

9 0.8 16

10 1.0 20

11 0.2 4

12 0.4 8

13 0.6 12

14 0.8 16

15 1.0 20

Table 8. Axle Load and Axle Spacing of Real DLVs

Number

Axle
load
�kN�

Axle
spacings

�m�

Gross
weight
�kN�

Overall
length
�m�

116 200–200–200–200 1.2–1.2–1.2 800.0 3.60

117 35.6–142.4 4.27 178.0 4.27

118 35.6–142.4–142.4 4.27–4.27 320.4 8.54

119 35.6–142.4–142.4 4.27–9.15 320.4 13.42

120 44.5–178–178 4.27–4.27 400.5 8.54

121 44.5–178–178 4.27–9.15 400.5 13.42

122 106.8–106.8 1.22 213.6 1.22

Fig. 16. Examples of the “most dangerous” influence lines:
�a� n=0.73 �nP=0.98, nM =0.91, and nB=1� and �b� n=2.32
�nP=2.50, nM =2.88, and nB=2.46�



Appendix III. Calculation of the Effects
with the Artificial Influence Lines

The most dangerous placement of loads on a structure �or on an
influence line� can be determined by moving the load in small
steps along the structure �or along the influence line�. This calcu-
lation must be carried out, in our case, for different lengths of the
influence lines, which requires a step-by-step increase of the
length of the lines. To avoid this time-consuming calculation, a
simple, very fast algorithm is presented below. The calculation,
instead of a double loop, requires matrix manipulations only.

Calculation of EP

We consider a vehicle load that consists of n concentrated �axle�
loads �Fig. 17, top�. There are n�n+1� /2 different possible
arrangements of loads, which are shown also in Fig. 17 and
explained below.

The very left force, which is placed on the influence line,
can be P1 , P2 , . . . , Pn−1 , Pn as shown in the rows of Fig. 17.
The last load is denoted by Pk and k can take the values

Table 9. Axle Load and Axle Spacing of Real OVs

Number

Axle
load
�kN�

216 120.2–111.2–111.2–111.2–96.6–96.6–96.6

217 104.1–118.8–116.1

218 70.8–69.4–118.8–113.5

219 48.1–99.7–127.3–129.1

220 54.3–96.1–101.5–96.1–109

221 47.2–95.2–95.2–96.6–70.3–94.3

222 40.1–103.2–84.1–87.2–74.8

223 44.1–45.4–47.2–56.5–66.8–61.4

224 56.1–58.7–97–100.1–74.3–80.1–76.1–79.7

225 53.4–89–89–89–89–89–89–89–89

226 51.2–56.3–56.3–66.5–66.5–66.5–66.5–66.5

Fig. 17. Calculation of the P line
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shown in Fig. 17, on the right. As we stated above, there are
m=n+ �n−1�+ �n−2�+ . . . +1=n�n+1� /2 arrangements. We treat
these force arrangements as load cases, from t=1 to m; in every
case we have a force vector �e.g., Pi= �Pj , Pj+1 , . . . , Pk�� and a
distance vector �di, the elements of di=distances of the forces
from the first �left� force, hence the first element is zero�, and we
also determine the length of the load �li�, the distance between the
first and last force. In Fig. 17, li= ljk is shown.

The effect EP can be calculated for every load case. For
example, for the ith load case, when the length of the influence
line l is equal to or greater than the length of the load case �li�,
XP,i is the sum of the forces

EP,i = Piei if l 	 li

where ei=vector containing unities and it has the same number of
elements as Pi. The EP,i , li values are shown in Fig. 18�a�. EP,i is
valid for any value of l	 li. In this calculation every possible load
case is considered, and hence we can make the envelope, as
shown in Fig. 18�b�, obtain the EP�l� curve.

Calculation of EM

The load cases are identical to those which were determined
for the calculation of EP,i. The loads may move backward, which
we take into account by considering two �M lines, as shown in
Fig. 19 �and the directions of the loads will not be changed�.

Axle
spacings

�m�

Gross
weight
�kN�

Overall
length
�m�

–1.22–3.66–1.22–10.68–1.22–1.22 854.8 23.49

4.88–1.4 339.0 6.28

2.93–1.46–1.62 372.5 6.01

4.33–5.91–1.19 404.2 11.43

5.85–1.28–8.44–3.14 457.0 18.71

3.66–1.37–10.03–1.22–1.22 498.8 17.50

3.87–7.01–3.14–6.86 389.4 20.88

5.27–1.49–6.46–3.02–7.22 321.4 23.46

–1.4–1.55–11.80–1.74–1.55–4.85 622.1 27.58

–1.4–4.3–1.4–11.9–1.4–4.3–1.4 765.4 30.50

–1.22–7.32–2.44–7.32–2.44–7.32 496.3 32.33

Fig. 18. Determination of EP�l� curve
4.27

4.69

4.4

4.27
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For the ith load case �Fig. 19�, when the peak of the triangle is
on the left

EM,i
li = Pi�ei −

1

l
di� if l 	 li

while when the peak is on the right

EM,i
li =

1

li
Piei if l 	 li

which is shown in Fig. 20.

Calculation of EB

When the influence line is a symmetrical triangle, one of the
forces must be placed at the peak of the triangle. Accordingly,
either P1 or P2 , . . ., or Pn must be placed at the peak, as shown in
the rows of Fig. 21.

In every row there are n different load arrangements; hence we
consider a total number of load cases m=n2.

The length of the ith �i=1,2 , . . . ,m� load case li= ljk is twice
the distance between the jth and the kth force. For each case a
distance vector di and a force vector Pi is obtained. The elements
of di are the distances of the forces from the force placed at
the peak of the triangle �P j�. The effect EB,i can be calculated as
�Fig. 22�

EB,i = Pi�ei −
2

l
�di�� if l 	 li

where �di �=vector, the elements of which are equal to the absolute
values of the elements of di.

Using the above expression we can determine the envelope of
EB as was done for EM.
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